This article explores various metrics used to evaluate the performance of classification machine learning models, including precision, recall, F1-score, accuracy, and alert rate. It explains how these metrics are calculated and provides insights into their application in real-world scenarios, particularly in fraud detection.
Discusses the trends in Large Language Models (LLMs) architecture, including the rise of more GPU, more weights, more tokens, energy-efficient implementations, the role of LLM routers, and the need for better evaluation metrics, faster fine-tuning, and self-tuning.